

Available online at www.sciencedirect.com

JOURNAL OF CHROMATOGRAPHY A

Journal of Chromatography A, 1094 (2005) 201

Erratum

www.elsevier.com/locate/chroma

Erratum to "Behavior and characteristics of biogenic amines, ornithine and lysine derivatized with the *o*-phthalaldehyde–ethanethiol–fluorenylmethyl chloroformate reagent" [J. Chromatogr. A 1087 (2005) 210–222]

R. Hanczko^a, Á. Kőrös^a, F. Tóth^b, I. Molnár-Perl^{a,*}

^a Institute of Inorganic and Analytical Chemistry, L. Eötvös University, H-1518 Budapest 112, P.O. Box 32, Hungary

^b Central Service for Plant Protection and Soil Conservation, Chemical Department, Budaörsi út 141-145, H-1118 Budapest, Hungary

Received 26 August 2005; accepted 26 August 2005 Available online 21 September 2005

Keywords: Biogenic amines; Ornithine; Lysine; Derivatization; LC

Page 219, section 3.54:

Left-hand column:

Second text line: amino group should read α -amino group; neighbor should read linked.

Third text line: amino group should read δ -amino group; neighbor should read linked.

One but last line of paragraph marked (i): amino group should read α-amino group; neighbor should read linked.

Right-hand column:

Line marked (i) should read line marked (ii); first line: C2 and C3 should read C1-C2.

Line marked (ii) should read line marked (iii); first line: is the neighboring to should read is the α -one linked; last line: neighboring amino should read neighboring, δ -amino.

Page 220, Table 6 should read:

Table 6

Fragmentation possibilities of the simple mixed compound of ornithine: $Orn5 = \{OPA][ET][FMOC][Orn]-H_2O\} \times = m/z = 497.5$

Cleavage between ^a	Possible fragments of $Orn5 = m/z = 497.5$	
	α-Amino group	δ-Amino group
C1 (45) and C2 (87)	FMOC $m/z = 267.2$	OPA/ET $m/z = 247.2 - H_2O = 229.2$
	OPA/ET $m/z = 205.2$	FMOC $m/z = 309.2$
C2 (74) and C3 (58)	FMOC $m/z = 296.2$	OPA/ET $m/z = 218.2$
	OPA/ET $m/z = 234.2$	FMOC $m/z = 280.2$
C3 (88) and C4 (44)	FMOC $m/z = 310.2$	OPA/ET $m/z = 204.2$
	OPA/ET $m/z = 248.2$	FMOC $m/z = 266.2$
C4 (102) and C5 30)	FMOC $m/z = 324.2$	OPA/ET $m/z = 190.2$
	OPA/ET $m/z = 262.2$	FMOC $m/z = 252.2$

Indications: As in Fig. 9A-D.

^a In parentheses = initial fragment masses (m/z).

The changes do not affect the major conclusions of the paper.

DOI of original article:10.1016/j.chroma.2004.12.056.

^{*} Corresponding author. Tel.: +36 12090608; fax: +36 12090602.

E-mail address: perlne@para.chem.elte.hu (I. Molnár-Perl).

^{0021-9673/\$ –} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.chroma.2005.08.077